POWER OPERATIONAL AMPLIFIERS

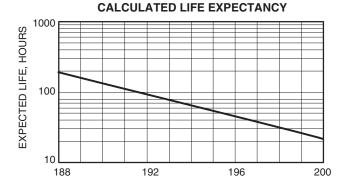
PA12H

HTTP://WWW.APEXMICROTECH.COM (800) 546-APEX (800) 546-2739

FEATURES

- LOW COST 200°C VERSION OF PA12
- OUTPUT CURRENT at 200°C ±1A
- FULL SPECIFICATIONS -25°C to +125°C
- WIDE SUPPLY RANGE ±10 to ±45V
- CURRENT FOLDOVER PROTECTION
- EXCELLENT LINEARITY Class A/B Output

APPLICATIONS


- MOTOR, VALVE AND ACTUATOR CONTROL
- POWER TRANSDUCERS UP TO 100kHz
- PROGRAMMABLE POWER SUPPLIES UP TO 80V
- TRANSMISSION LINE DRIVER

DESCRIPTION

The PA12H is a low cost, high temperature Power Op Amp made especially for short term use in extreme environmental situations such as down hole instrumentation. The amplifier can power mechanical or electronic transducers and can drive the long transmission lines associated with these applications.

The PA12H, based on the standard PA12's very high power level, leaves a six watt capability after being derated for operation at a case temperature of 200°C. To meet the high temperature requirements for up to 200 hours, polyimid has replaced the standard epoxy for attaching the small signal devices.

These hybrid integrated circuits utilize thick film conductors. ceramic capacitors and silicon semiconductors to maximize reliability, minimize size and give top performance. Ultrasonically bonded aluminum wires provide reliable interconnections at all operating temperatures. The 8-pin TO-3 package (see Package Outlines) is hermetically sealed and isolated. The use of compressible thermal washers and/or improper mounting torque will void the product warranty. Please see "General Operating Considerations".

SPECIFICATIONS

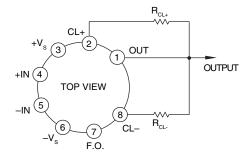
Specifications of the standard PA12 apply to the PA12H with the exception of the temperature range extensions

- 1. The operating and storage temperature ABSOLUTE MAXI-MUM RATINGS extend to +200°C.
- Static and dynamic tests are performed at +125°C as shown in SG 2 and SG 5 of the military PA12M data sheet.
- 3. Additional tests at $T_C = 200^{\circ}C$:

 A. Quiescent current = 100mA max at $\pm V_S = 45$.

 B. Voltage swing = $\pm V_S 4$ ($I_O = 1A$, $\pm V_S = 15$)

GENERAL CONSIDERATIONS


The primary aim of the PA12H is to provide a reasonable level of power output at a minimum cost. To achieve this end, full dynamic tests are performed up to 125°C, with only minimal 100% testing at 200°C. This approach saves nearly an order of magnitude over the cost of a fully tested long life product. but does require recognition of two limitations.

First, input parameters such as voltage offset and bias current are not tested above 125°C. This could lead to accuracy problems if the PA12H is used as a precision computational element. Solutions to this limitation include contacting the factory regarding additional testing at higher temperatures or using high temperature small signal amplifiers for computational tasks.

The second limitation of life span requires the PA12H to be used in short term applications. This requirement is mandated by the low cost design concept. At 200°C component degradation is nearly as severe during storage as during actual operation. This must be taken into account when scheduling actual implementation of the finished package.

Please consult the PA12 data sheet for basic information on this amplifier; the PA12M data sheet for details on +125°C tests, and Power Operational Amplifier handbook section "General Operating Considerations," for recommendations on supplies, stability, heatsinks and bypassing.

EXTERNAL CONNECTIONS

